FACULTY OF INFORMATICS

M.C.A. (NON-CBCS) II Year I - Semester (Backlog) Examination, April 2022

Subject: Operations Research

Max. Marks: 80

Time: 3 Hours

(Missing data, if any, may be suitably assumed)

Note: Answer any five questions from the following. All questions carry equal marks.

- 1 Solve the LPP using graphical method. Maximize z=6x+4ySubject to constraints $2x+3y \le 100$ $4x+2y \le 120$ $x,y \ge 0$
- 2 Use simplex method to solve the following LPP, Maximize z=5x+3y Subject to constraints x+y≤2

5x+2y≤10

3x+8y≤12

x,y≥0

3 Solve the following transportation problem for optimality

			То				
\sim	From		D1	D2	D3	D4	Supply
		F1	11	13	17	14	250
		F2	16	18	14	10	300
		F3	21	24	13	10	400
\bigcirc		Demand	200	225	275	250	950

- 4 (a) Write about north west corner rule method.
 - (b) Obtain initial basic feasible solution (IBFS) of following transportation problem.

	D1	D2	D3	D4	Supply
01	1	2	1	4	30
02	3	3	2	1	50
03	4	2	5	9	20
Demand	20	40	30	10	100

5 Find the optimal solution to the assignment problem.

Operators

	Machine								
	Α	A B C D		Е					
1	52	58	58	53	54				
2	52	50	55	60	60				
3	55	56	57	58	59				
4	56	51	51	56	59				
5	50	52	53	56	59				

6 Find the optimal integer solution to the following linear programming problem. Maximize Z=x+2y

Subject to 2y≤7

x+y≤7

2x≤11

- $x,y \ge 0$ and integers.
- 7 Find the shortest path from city 1 to city 10 in the diagram shown below using dynamic programming.

- 8 Define (a) Principle of optimality (b) Recursive function (c) Stages(d) State variable (e) Backward Recursion.
- 9 Solve the game by using dominance property

		Player B			
	2	2	1	-2	-3
Player A	4	3	4	-2	0
	5	1	2	5	6

10 Solve the following game graphically.

В